Photocatalytic degradation of steroid hormone micropollutants by TiO2-coated polyethersulfone membranes in a continuous flow-through process

[ad_1]

  • Escher, B. I., Stapleton, H. M. & Schymanski, E. L. Tracking complex mixtures of chemicals in our changing environment. Science 367, 388–392 (2020).

    CAS 

    Google Scholar
     

  • Johnson, A. C., Jin, X., Nakada, N. & Sumpter, J. P. Learning from the past and considering the future of chemicals in the environment. Science 367, 384–387 (2020).

    CAS 

    Google Scholar
     

  • Aemig, Q., Helias, A. & Patureau, D. Impact assessment of a large panel of organic and inorganic micropollutants released by wastewater treatment plants at the scale of France. Water Res. 188, 116524 (2021).

    CAS 

    Google Scholar
     

  • Gonzalez, A. et al. Steroid hormones and estrogenic activity in the wastewater outfall and receiving waters of the Chascomus chained shallow lakes system (Argentina). Sci. Total Environ. 743, 140401 (2020).

    CAS 

    Google Scholar
     

  • Adeel, M., Song, X., Wang, Y., Francis, D. & Yang, Y. Environmental impact of estrogens on human, animal and plant life: a critical review. Environ. Int. 99, 107–119 (2017).

    CAS 

    Google Scholar
     

  • Kuch, H. M. & Ballschmiter, K. Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC−(NCI)−MS in the picogram per liter range. Environ. Sci. Technol. 35, 3201–3206 (2001).

    CAS 

    Google Scholar
     

  • Luo, Y. et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 473474, 619–641 (2014).


    Google Scholar
     

  • Pelissero, C. et al. Vitellogenin synthesis in cultured hepatocytes; an in vitro test for the estrogenic potency of chemicals. J. Steroid Biochem. Mol. Biol. 44, 263–272 (1993).

    CAS 

    Google Scholar
     

  • Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December on the Quality of Water Intended for Human Consumption (EU, 2020).

  • Directive of the European Parliament and of the Council on the Quality of Water Intended for Human Consumption (Recast) 2017/0332(COD) (EU, 2018).

  • Alvarez, P. J. J., Chan, C. K., Elimelech, M., Halas, N. J. & Villagrán, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 13, 634–641 (2018).

    CAS 

    Google Scholar
     

  • Hodges, B. C., Cates, E. L. & Kim, J. H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 13, 642–650 (2018).

    CAS 

    Google Scholar
     

  • Mauter, M. S. et al. The role of nanotechnology in tackling global water challenges. Nat. Sustain. 1, 166–175 (2018).


    Google Scholar
     

  • Fischer, K., Gläser, R. & Schulze, A. Nanoneedle and nanotubular titanium dioxide–PES mixed matrix membrane for photocatalysis. Appl. Catal. B 160161, 456–464 (2014).

  • Ahmad, R. et al. Photocatalytic systems as an advanced environmental remediation: recent developments, limitations and new avenues for applications. J. Environ. Chem. Eng. 4, 4143–4164 (2016).

    CAS 

    Google Scholar
     

  • Orozco-Hernández, L. et al. 17-β-Estradiol: significant reduction of its toxicity in water treated by photocatalysis. Sci. Total Environ. 669, 955–963 (2019).


    Google Scholar
     

  • Castellanos, R. M., Paulo Bassin, J., Dezotti, M., Boaventura, R. A. R. & Vilar, V. J. P. Tube-in-tube membrane reactor for heterogeneous TiO2 photocatalysis with radial addition of H2O2. Chem. Eng. J. 395, 124998 (2020).

    CAS 

    Google Scholar
     

  • Mozia, S. Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep. Purif. Technol. 73, 71–91 (2010).

    CAS 

    Google Scholar
     

  • Wang, M. et al. Preliminary study on the removal of steroidal estrogens using TiO2-doped PVDF ultrafiltration membranes. Water 8, 134 (2016).

  • Tsehaye, M. T., Velizarov, S. & Van der Bruggen, B. Stability of polyethersulfone membranes to oxidative agents: a review. Polym. Degrad. Stab. 157, 15–33 (2018).

    CAS 

    Google Scholar
     

  • Berger, T. E., Regmi, C., Schäfer, A. I. & Richards, B. S. Photocatalytic degradation of organic dye via atomic layer deposited TiO2 on ceramic membranes in single-pass flow-through operation. J. Membr. Sci. 604, 118015 (2020).

    CAS 

    Google Scholar
     

  • Lyubimenko, R., Busko, D., Richards, B. S., Schäfer, A. I. & Turshatov, A. Efficient photocatalytic removal of methylene blue using a metalloporphyrin–poly(vinylidene fluoride) hybrid membrane in a flow-through reactor. ACS Appl. Mater. Interfaces 11, 31763–31776 (2019).

    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production. Nat. Commun. 11, 6228 (2020).


    Google Scholar
     

  • Horovitz, I. et al. Carbamazepine degradation using a N-doped TiO2 coated photocatalytic membrane reactor: influence of physical parameters. J. Hazard. Mater. 310, 98–107 (2016).

    CAS 

    Google Scholar
     

  • Regmi, C. et al. Comparison of photocatalytic membrane reactor types for the degradation of an organic molecule by TiO2-coated PES membrane. Catalysts 10, 725 (2020).

    CAS 

    Google Scholar
     

  • Fischer, K. et al. Synthesis of high crystalline TiO2 nanoparticles on a polymer membrane to degrade pollutants from water. Catalysts 8, 376 (2018).


    Google Scholar
     

  • Fischer, K. et al. Low-temperature synthesis of anatase/rutile/brookite TiO2 nanoparticles on a polymer membrane for photocatalysis. Catalysts 7, 209 (2017).


    Google Scholar
     

  • Zhang, S., Hedtke, T., Zhou, X., Elimelech, M. & Kim, J.-H. Environmental applications of engineered materials with nanoconfinement. ACS ES T Eng. 1, 706–724 (2021).

    CAS 

    Google Scholar
     

  • Ollis, D. F., Pelizzetti, E. & Serpone, N. Photocatalyzed destruction of water contaminants. Environ. Sci. Technol. 25, 1522–1529 (1991).

    CAS 

    Google Scholar
     

  • Herrmann, J.-M. Photocatalysis fundamentals revisited to avoid several misconceptions. Appl. Catal. B 99, 461–468 (2010).

    CAS 

    Google Scholar
     

  • Renken, A. & Kiwi-Minsker, L. in Advances in Catalysis, Vol. 53 (eds Gates, B. C. & Knözinger, H.) Ch. 2 (Elsevier, 2010).

  • Gao, Y. et al. Filtration-enhanced highly efficient photocatalytic degradation with a novel electrospun rGO@TiO2 nanofibrous membrane: implication for improving photocatalytic efficiency. Appl. Catal. B 268, 118737 (2020).

    CAS 

    Google Scholar
     

  • Friedmann, D., Mendive, C. & Bahnemann, D. TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Appl. Catal. B 99, 398–406 (2010).

    CAS 

    Google Scholar
     

  • Van der Bruggen, B., Vandecasteele, C., Van Gestel, T., Doyen, W. & Leysen, R. A review of pressure‐driven membrane processes in wastewater treatment and drinking water production. Environ. Prog. 22, 46–56 (2003).


    Google Scholar
     

  • Imbrogno, A., Samanta, P. & Schäfer, A. I. Fate of steroid hormone micropollutant estradiol in a hybrid magnetic ion exchange resin-nanofiltration process. Environ. Chem. 16, 630 (2019).

    CAS 

    Google Scholar
     

  • Fogler, H. S. Elements of Chemical Reaction Engineering 5th edn (Pearson, 2016).

  • Carretero-Genevrier, A., Boissiere, C., Nicole, L. & Grosso, D. Distance dependence of the photocatalytic efficiency of TiO2 revealed by in situ ellipsometry. J. Am. Chem. Soc. 134, 10761–10764 (2012).

    CAS 

    Google Scholar
     

  • Hurwitz, A. R. & Liu, S. T. Determination of aqueous solubility and pKa values of estrogen. J. Pharm. Sci. 66, 624–627 (1977).

    CAS 

    Google Scholar
     

  • Lewis, K. M. & Archer, R. D. pKa values of estrone, 17β-estradiol and 2-methoxyestrone. Steroids 34, 485–499 (1979).

    CAS 

    Google Scholar
     

  • Turchi, C. S. & Ollis, D. F. Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J. Catal. 122, 178–192 (1990).

    CAS 

    Google Scholar
     

  • Schäfer, A., Nghiem, L. & Waite, T. Removal of the natural hormone estrone from aqueous solutions using nanofiltration and reverse osmosis. Environ. Sci. Technol. 37, 182–188 (2003).


    Google Scholar
     

  • Ohko, Y. et al. 17β-Estradiol degradation by TiO2 photocatalysis as a means of reducing estrogenic activity. Environ. Sci. Technol. 36, 4175–4181 (2002).

    CAS 

    Google Scholar
     

  • Mai, J., Sun, W., Xiong, L., Liu, Y. & Ni, J. Titanium dioxide mediated photocatalytic degradation of 17β-estradiol in aqueous solution. Chemosphere 73, 600–606 (2008).

    CAS 

    Google Scholar
     

  • Schäfer, A. I., Akanyeti, I. & Semiao, A. J. Micropollutant sorption to membrane polymers: a review of mechanisms for estrogens. Adv. Colloid Interface Sci. 164, 100–117 (2011).


    Google Scholar
     

  • Lyubimenko, R., Richards, B. S., Turshatov, A. & Schäfer, A. I. Separation and degradation detection of nanogram-per-litre concentrations of radiolabelled steroid hormones using combined liquid chromatography and flow scintillation analysis. Sci. Rep. 10, 7095 (2020).

    CAS 

    Google Scholar
     

  • Arlos, M. J. et al. Photocatalytic decomposition of selected estrogens and their estrogenic activity by UV-LED irradiated TiO2 immobilized on porous titanium sheets via thermal-chemical oxidation. J. Hazard. Mater. 318, 541–550 (2016).

    CAS 

    Google Scholar
     

  • Chaves, F. P. et al. Comparative endocrine disrupting compound removal from real wastewater by UV/Cl and UV/H2O2: effect of pH, estrogenic activity, transformation products and toxicity. Sci. Total Environ. 746, 141041 (2020).

    CAS 

    Google Scholar
     

  • Mboula, V. M. et al. Photocatalytic degradation of estradiol under simulated solar light and assessment of estrogenic activity. Appl. Catal. B 162, 437–444 (2015).

    CAS 

    Google Scholar
     

  • Zhang, W., Li, Y., Su, Y., Mao, K. & Wang, Q. Effect of water composition on TiO2 photocatalytic removal of endocrine disrupting compounds (EDCs) and estrogenic activity from secondary effluent. J. Hazard. Mater. 215216, 252–258 (2012).


    Google Scholar
     

  • Bridle, H. L., Heringa, M. B. & Schäfer, A. I. Solid-phase microextraction to determine micropollutant–macromolecule partition coefficients. Nat. Protoc. 11, 1328–1344 (2016).

    CAS 

    Google Scholar
     

  • Imbrogno, A. & Schäfer, A. I. Comparative study of nanofiltration membrane characterization devices of different dimension and configuration (cross flow and dead end). J. Membr. Sci. 585, 67–80 (2019).

    CAS 

    Google Scholar
     

  • Millipore Express PLUS Membrane GPWP02500 (Millipore, 2017); http://www.merckmillipore.com/DE/en/product/Millipore-Express-PLUS-Membrane-Filter,MM_NF-GPWP02500

  • Sun, W., Li, S., Mai, J. & Ni, J. Initial photocatalytic degradation intermediates/pathways of 17α-ethynylestradiol: effect of pH and methanol. Chemosphere 81, 92–99 (2010).

    CAS 

    Google Scholar
     

  • O. Levenspiel, Chapter 2. Kinetics of Homogeneous Reactions, in: Chemical Reaction Engineering, Third Edition, John Wiley & Sons, 1998, pp. 13-37.

  • Lyubimenko, R., Gutierrez Cardenas, O.I., Turshatov, A., Richards, B. S. & Schäfer, A. I. Photodegradation of steroid-hormone micropollutants in a flow-through membrane reactor coated with Pd(II)-porphyrin. Appl. Catal. B 291, 120097 (2021).

    CAS 

    Google Scholar
     

  • [ad_2]

    Leave a Reply