Biocompatible exosome-modified fibrin gel accelerates the restoration of spinal wire damage by VGF-mediated oligodendrogenesis | Journal of Nanobiotechnology

[ad_1]

  • Al Mamun A, Wu Y, Monalisa I, Jia C, Zhou Ok, Munir F, Xiao J. Position of pyroptosis in spinal wire damage and its therapeutic implications. J Adv Res. 2021;28:97–109.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hu X-C, Lu Y-B, Yang Y-N, Kang X-W, Wang Y-G, Ma B, Xing S. Progress in medical trials of cell transplantation for the therapy of spinal wire damage: what number of questions stay unanswered? Neural Regen Res. 2021;16:405–13.

    PubMed 
    Article 

    Google Scholar
     

  • Liu W-Z, Ma Z-J, Li J-R, Kang X-W. Mesenchymal stem cell-derived exosomes: therapeutic alternatives and challenges for spinal wire damage. Stem Cell Res Ther. 2021. https://doi.org/10.1186/s13287-021-02153-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo J, Shi X, Li L, Tan Z, Feng F, Li J, Pang M, Wang X, He L. An injectable and self-healing hydrogel with managed launch of curcumin to restore spinal wire damage. Bioact Mater. 2021;6:4816–29.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu W, Luo Y, Ning C, Zhang W, Zhang Q, Zou H, Fu C. Thermo-sensitive electroactive hydrogel mixed with electrical stimulation for restore of spinal wire damage. J Nanobiotechnol. 2021. https://doi.org/10.1186/s12951-021-01031-y.

    Article 

    Google Scholar
     

  • Lee B-C, Kang I, Yu Ok-R. Therapeutic options and up to date medical trials of mesenchymal stem cell (MSC)-derived exosomes. J Clin Med. 2021. https://doi.org/10.3390/jcm10040711.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nikfarjam S, Rezaie J, Zolbanin NM, Jafari R. Mesenchymal stem cell derived-exosomes: a contemporary method in translational medication. J Transl Med. 2020. https://doi.org/10.1186/s12967-020-02622-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhai X, Chen Ok, Yang H, Li B, Zhou T, Wang H, Zhou H, Chen S, Zhou X, Wei X, et al. Extracellular vesicles derived from CD73 modified human umbilical wire mesenchymal stem cells ameliorate irritation after spinal wire damage. J Nanobiotechnol. 2021. https://doi.org/10.1186/s12951-021-01022-z.

    Article 

    Google Scholar
     

  • Zhang C, Li D, Hu H, Wang Z, An J, Gao Z, Zhang Ok, Mei X, Wu C, Tian H. Engineered extracellular vesicles derived from major M2 macrophages with anti-inflammatory and neuroprotective properties for the therapy of spinal wire damage. J Nanobiotechnol. 2021. https://doi.org/10.1186/s12951-021-01123-9.

    Article 

    Google Scholar
     

  • Li C, Qin T, Zhao J, He R, Wen H, Duan C, Lu H, Cao Y, Hu J. Bone marrow mesenchymal stem cell-derived exosome-educated macrophages promote practical therapeutic after spinal wire damage. Entrance Cell Neurosci. 2021. https://doi.org/10.3389/fncel.2021.725573.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romanelli P, Bieler L, Scharler C, Pachler Ok, Kreutzer C, Zaunmair P, Jakubecova D, Mrowetz H, Benedetti B, Rivera FJ, et al. Extracellular vesicles can ship anti-inflammatory and anti-scarring actions of mesenchymal stromal cells after spinal wire damage. Entrance Neurol. 2019. https://doi.org/10.3389/fneur.2019.01225.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forsberg MH, Kink JA, Hematti P, Capitini CM. Mesenchymal stromal cells and exosomes: progress and challenges. Entrance Cell Dev Biol. 2020. https://doi.org/10.3389/fcell.2020.00665.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maqsood M, Kang M, Wu X, Chen J, Teng L, Qiu L. Grownup mesenchymal stem cells and their exosomes: sources, traits, and utility in regenerative medication. Life Sci. 2020. https://doi.org/10.1016/j.lfs.2020.118002.

    Article 
    PubMed 

    Google Scholar
     

  • Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, objective, and strategies for exosome isolation and evaluation. Cells. 2019. https://doi.org/10.3390/cells8070727.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee M, Liu T, Im W, Kim M. Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington’s illness in vitro mannequin. Eur J Neurosci. 2016;44:2114–9.

    PubMed 
    Article 

    Google Scholar
     

  • Shiue S-J, Rau R-H, Shiue H-S, Hung Y-W, Li Z-X, Yang KD, Cheng J-Ok. Mesenchymal stem cell exosomes as a cell-free remedy for nerve injury-induced ache in rats. Ache. 2019;160:210–23.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Duncan GJ, Manesh SB, Hilton BJ, Assinck P, Plemel JR, Tetzlaff W. The destiny and performance of oligodendrocyte progenitor cells after traumatic spinal wire damage. Glia. 2020;68:227–45.

    PubMed 
    Article 

    Google Scholar
     

  • Llorens-Bobadilla E, Chell JM, Le Merre P, Wu Y, Zamboni M, Bergenstrahle J, Stenudd M, Sopova E, Lundeberg J, Shupliakov O, et al. A latent lineage potential in resident neural stem cells permits spinal wire restore. Science. 2020;370:73.

    Article 
    CAS 

    Google Scholar
     

  • Zhang H, Fang X, Huang DK, Luo QL, Zheng MJ, Wang KK, Cao L, Yin ZS. Erythropoietin signaling will increase neurogenesis and oligodendrogenesis of endogenous neural stem cells following spinal wire damage each in vivo and in vitro. Mol Med Rep. 2018;17:264–72.

    CAS 
    PubMed 

    Google Scholar
     

  • Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp Ok, Steward O. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal wire damage. J Neurosci. 2005;25:4694–705.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xin HQ, Katakowski M, Wang FJ, Qian JY, Liu XS, Ali MM, Buller B, Zhang ZG, Chopp M. MicroRNA cluster miR-17-92 cluster in exosomes improve neuroplasticity and practical restoration after stroke in rats. Stroke. 2017;48:747–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shafei S, Khanmohammadi M, Heidari R, Ghanbari H, Nooshabadi VT, Farzamfar S, Akbariqomi M, Sanikhani NS, Absalan M, Tavoosidana G. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness pores and skin wounds: an in vivo research. J Biomed Mater Res Half A. 2020;108:545–56.

    CAS 
    Article 

    Google Scholar
     

  • Fan L, Guan P, Xiao C, Wen H, Wang Q, Liu C, Luo Y, Ma L, Tan G, Yu P, et al. Exosome-functionalized polyetheretherketone-based implant with immunomodulatory property for enhancing osseointegration. Bioact Mater. 2021;6:2754–66.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang L, He X, Jing G, Wang H, Niu J, Qian Y, Wang S. Layered double hydroxide nanoparticles with osteogenic results as miRNA carriers to synergistically promote osteogenesis of MSCs. ACS Appl Mater Interfaces. 2021;13:48386–402.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Canonico S. The usage of human fibrin glue within the surgical operations. Acta Biomed Atenei Parm. 2003;74(Suppl 2):21–5.


    Google Scholar
     

  • Ersland KM, Skrede S, Stansberg C, Steen VM. Subchronic olanzapine publicity results in elevated expression of myelination-related genes in rat fronto-medial cortex. Transl Psychiatry. 2017. https://doi.org/10.1038/s41398-017-0008-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dugas JC, Tai YC, Velocity TP, Ngai J, Barres BA. Practical genomic evaluation of oligodendrocyte differentiation. J Neurosci. 2006;26:10967–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Banerjee A, Arha M, Choudhary S, Ashton RS, Bhatia SR, Schaffer DV, Kane RS. The affect of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials. 2009;30:4695–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tseng T-C, Tao L, Hsieh F-Y, Wei Y, Chiu I-M, Hsu S-H. An injectable, self-healing hydrogel to restore the central nervous system. Adv Mater. 2015;27:3518–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fan L, Liu C, Chen X, Zou Y, Zhou Z, Lin C, Tan G, Zhou L, Ning C, Wang Q. Directing induced pluripotent stem cell derived neural stem cell destiny with a three-dimensional biomimetic hydrogel for spinal wire damage restore. ACS Appl Mater Interfaces. 2018;10:17742–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mind SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I. Calcitonin gene-related peptide is a potent vasodilator. Nature. 1985;313:54–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Loken LS, Braz JM, Etlin A, Sadeghi M, Bernstein M, Jewell M, Steyert M, Kuhn J, Hamel Ok, Llewellyn-Smith IJ, Basbaum A. Contribution of dorsal horn CGRP-expressing interneurons to mechanical sensitivity. Elife. 2021. https://doi.org/10.7554/eLife.59751.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Z, Zhong P, Hu F, Barger Z, Ren YL, Ding XL, Li SZ, Weber R, Chung SJ, Palmiter RD, Dan Y. An excitatory circuit within the perioculomotor midbrain for non-rem sleep management. Cell. 2019;177:1293.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Castro DS, Skowronska-Krawczyk D, Armant O, Donaldson IJ, Parras C, Hunt C, Critchley JA, Nguyen L, Gossler A, Gottgens B, et al. Proneural bHLH and Brn proteins coregulate a neurogenic program by way of cooperative binding to a conserved DNA motif. Dev Cell. 2006;11:831–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dominguez MH, Ayoub AE, Rakic P. POU-III transcription elements (Brn1, Brn2, and Oct6) affect neurogenesis, molecular id, and migratory vacation spot of upper-layer cells of the cerebral cortex. Cereb Cortex. 2013;23:2632–43.

    PubMed 
    Article 

    Google Scholar
     

  • Baldauf L, Endres T, Scholz J, Kirches E, Ward DM, Lessmann V, Borucki Ok, Mawrin C. Mitoferrin-1 is required for mind vitality metabolism and hippocampus-dependent reminiscence. Neurosci Lett. 2019. https://doi.org/10.1016/j.neulet.2019.134521.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hara M, Kobayakawa Ok, Ohkawa Y, Kumamaru H, Yokota Ok, Saito T, Kijima Ok, Yoshizaki S, Harimaya Ok, Nakashima Y, Okada S. Interplay of reactive astrocytes with kind I collagen induces astrocytic scar formation by way of the integrin-N-cadherin pathway after spinal wire damage. Nat Med. 2017;23:818–28.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Winter SV, Karayel O, Strauss MT, Padmanabhan S, Floor M, Service provider Ok, Alcalay RN, Mann M. Urinary proteome profiling for stratifying sufferers with familial Parkinson’s illness. Embo Mol Med. 2021. https://doi.org/10.15252/emmm.202013257.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beckmann ND, Lin W-J, Wang M, Cohain AT, Charney AW, Wang P, Ma W, Wang Y-C, Jiang C, Audrain M, et al. Multiscale causal networks determine VGF as a key regulator of Alzheimer’s illness. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-17405-z.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mizoguchi T, Hara H, Shimazawa M. VGF has roles within the pathogenesis of main depressive dysfunction and schizophrenia: proof from transgenic mouse fashions. Cell Mol Neurobiol. 2019;39:721–7.

    PubMed 
    Article 

    Google Scholar
     

  • Hesp ZC, Goldstein EA, Miranda CJ, Kaspar BK, McTigue DM. Persistent oligodendrogenesis and remyelination after spinal wire damage in mice and rats. J Neurosci. 2015;35:1274–90.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Pasinetti GM, Ungar LH, Lange DJ, Yemul S, Deng H, Yuan X, Brown RH, Cudkowicz ME, Newhall Ok, Peskind E, et al. Identification of potential CSF biomarkers in ALS. Neurology. 2006;66:1218–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Selle H, Lamerz J, Buerger Ok, Dessauer A, Hager Ok, Hampel H, Karl J, Kellmann M, Lannfelt L, Louhija J, et al. Identification of novel biomarker candidates by differential peptidomics evaluation of cerebrospinal fluid in Alzheimer’s illness. Comb Chem Excessive Throughput Display. 2005;8:801–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Meng S, Whitt AG, Tu A, Eaton JW, Li C, Yaddanapudi Ok. Isolation of exosome-enriched extracellular vesicles carrying granulocyte-macrophage colony-stimulating issue from embryonic stem cells. J Vis Exp. 2021. https://doi.org/10.3791/60170.

    Article 
    PubMed 

    Google Scholar
     

  • Solar J, Lu Z, Fu W, Lu Ok, Gu X, Xu F, Dai J, Yang Y, Jiang J. Exosome-derived ADAM17 promotes liver metastasis in colorectal most cancers. Entrance Pharmacol. 2021. https://doi.org/10.3389/fphar.2021.734351.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Z, Tang HB, Kang JJ, Chen ZY, Li YL, Fan QY, Zhang L, Tune YH, Zhang GL, Fan H. Necroptotic astrocytes induced neuronal apoptosis partially by way of EVs-derived pro-BDNF. Mind Res Bull. 2021;177:73–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • El Gaamouch F, Audrain M, Lin W-J, Beckmann N, Jiang C, Hariharan S, Heeger PS, Schadt EE, Gandy S, Ehrlich ME, Salton SR. VGF-derived peptide TLQP-21 modulates microglial perform by way of C3aR1 signaling pathways and reduces neuropathology in 5xFAD mice. Mol Neurodegener. 2020. https://doi.org/10.1186/s13024-020-0357-x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis JE, Brameld JM, Hill P, Cocco C, Noli B, Ferri G-L, Barrett P, Ebling FJP, Jethwa PH. Hypothalamic over-expression of VGF within the Siberian hamster will increase vitality expenditure and reduces physique weight acquire. Plos ONE. 2017;12:e0172724.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Li C, Li M, Yu H, Shen X, Wang J, Solar X, Wang Q, Wang C. Neuropeptide VGF C-terminal peptide TLQP-62 alleviates lipopolysaccharide-lnduced reminiscence deficits and anxiety-like and depression-like behaviors in mice: the function of BDNF/TrkB signaling. ACS Chem Neurosci. 2017;8:2005–18.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lin W-J, Jiang C, Sadahiro M, Bozdagi O, Vulchanova L, Alberini CM, Salton SR. VGF and its C-terminal peptide TLQP-62 regulate reminiscence formation in hippocampus through a BDNF-TrkB-dependent mechanism. J Neurosci. 2015;35:10343–56.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • He X, Zhu Y, Ma B, Xu X, Huang R, Cheng L, Zhu R. Bioactive 2D nanomaterials for neural restore and regeneration. Adv Drug Deliv Rev. 2022. https://doi.org/10.1016/j.addr.2022.114379.

    Article 
    PubMed 

    Google Scholar
     

  • Hsu J-M, Shiue S-J, Yang KD, Shiue H-S, Hung Y-W, Pannuru P, Poongodi R, Lin H-Y, Cheng J-Ok. Domestically utilized stem cell exosome-scaffold attenuates nerve injury-induced ache in rats. J Ache Res. 2020;13:3257–68.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang Ok, Zhao X, Chen X, Wei Y, Du W, Wang Y, Liu L, Zhao W, Han Z, Kong D, et al. Enhanced therapeutic results of mesenchymal stem cell-derived exosomes with an injectable hydrogel for hindlimb ischemia therapy. ACS Appl Mater Interfaces. 2018;10:30081–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rao F, Zhang D, Fang T, Lu C, Wang B, Ding X, Wei S, Zhang Y, Pi W, Xu H, et al. Exosomes from human gingiva-derived mesenchymal stem cells mixed with biodegradable chitin conduits promote rat sciatic nerve regeneration. Stem Cells Int. 2019. https://doi.org/10.1155/2019/2546367.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye Q, Zund G, Benedikt P, Jockenhoevel S, Hoerstrup SP, Sakyama S, Hubbell JA, Turina M. Fibrin gel as a 3 dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothorac Surg. 2000;17:587–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kadoya Ok, Lu P, Kenny N, Lee-Kubli C, Kumamaru H, Yao L, Knackert J, Poplawski G, Dulin JN, Strob H, et al. Spinal wire reconstitution with homologous neural grafts permits sturdy corticospinal regeneration. Nat Med. 2016;22:479–87.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rosenzweig ES, Brock JH, Lu P, Kumamaru H, Salegio EA, Kadoya Ok, Weber JL, Liang JJ, Moseanko R, Hawbecker S, et al. Restorative results of human neural stem cell grafts on the primate spinal wire. Nat Med. 2018;24:484.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kupcsik L, Alini M, Stoddart MJ. Epsilon-aminocaproic acid is a helpful fibrin degradation inhibitor for cartilage tissue engineering. Tissue Eng Half A. 2009;15:2309–13.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Edgar W, Warrell MJ, Warrell DA, Prentice CRM. Construction of soluble fibrin complexes and fibrin degradation merchandise after echis-carinatus chunk. Br J Haematol. 1980;44:471–81.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ahmann KA, Weinbaum JS, Johnson SL, Tranquillo RT. Fibrin degradation enhances vascular easy muscle cell proliferation and matrix deposition in fibrin-based tissue constructs fabricated in vitro. Tissue Eng Half A. 2010;16:3261–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Herrick S, Blanc-Brude O, Grey A, Laurent G. Fibrinogen. Int J Biochem Cell Biol. 1999;31:741–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Naito M, Stirk CM, Smith EB, Thompson WD. Clean muscle cell outgrowth stimulated by fibrin degradation merchandise: the potential function of fibrin fragment E in restenosis and atherogenesis. Thromb Res. 2000;98:165–74.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Alvarez-Saavedra M, De Repentigny Y, Yang D, O’Meara RW, Yan Ok, Hashem LE, Racacho L, Ioshikhes I, Bulman DE, Parks RJ, et al. Voluntary working triggers VGF-mediated oligodendrogenesis to delay the lifespan of Snf2h-null ataxic mice. Cell Rep. 2016;17:862–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • He X, Zhu Y, Yang L, Wang Z, Wang Z, Feng J, Wen X, Cheng L, Zhu R. MgFe-LDH nanoparticles: a promising leukemia inhibitory issue alternative for self-renewal and pluripotency upkeep in cultured mouse embryonic stem cells. Adv Sci. 2021. https://doi.org/10.1002/advs.202003535.

    Article 

    Google Scholar
     

  • [ad_2]

    Leave a Reply